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The motion of a carriage with two wheeled pairs over a rough horizontal plane is investigated in the following cases: (1) inertial 
motion, (2) when there is an elastic constraint which produces a restoring moment of the forces when the axis of rotation of the 
leading wheeled pair deviates from the unperturbed position, and (3) when there is a small harmonic moment between the leading 
wheeled pair and the platform. The properties of the exact solution of the system is analysed in the first case. In the second, 
using the method of averaging, it is shown that for small oscillations of the leading wheeled pair with respect to the platform, 
after a transition process, motion of the centre of mass of the system with constant velocity, proportional to the initial amplitude 
of the oscillation, occurs. In the third case, the average motion of the centre of mass occurs with a constant acceleration, the 
value of which is estimated using the asymptotic multiscale method. © 2005 Elsevier Ltd. All rights reserved. 

Recently, in relation to the problems involved in constructing microrobots, considerable attention has 
been devoted to the problem of finding new methods of accelerating (braking) mobile robots. In 
particular, the non-holonomic acceleration of mobile objects, such as skate-boards, has been discussed 
[1], methods of controlling the motion of different multisection crawling robots have been analysed 
[2, 3], the optimal control of the form of the central axis of the elastic rod, which models the motion 
of a snake, has been determined [4], etc. 

In this paper, we investigate the particular features of the dynamics of a mobile robot, taking into 
account the inertial and non-holonomic properties of its construction, which takes the form of a carriage 
with two wheeled pairs [5-7]. The absence in this system of a traditional drive on the wheels enables 
its construction to be simplified considerably. The investigation of the features of the robot motion uses 
an analogy between the differential equations of the mobile robot and an astatic gyroscope in gimbals 
[8, 9]. 

1. T H E  C O N S T R U C T I O N  O F  A M O B I L E  R O B O T  

The equations of motion of a carriage. A diagram of the carriage with two wheeled pairs we are 
considering is shown in Fig. 1. A mobile system of coordinates x l y  1 with origin at the pointA and axis 
Xl directed along the axis of symmetry of the platform is rigidly connected to the platformAB. A mobile 
system of coordinates x2y2 with origin at the point B is connected to the leading wheeled pair, which 
rotates about a vertical axis passing through the point B. 

The position of the mechanical system described is defined by four generalized coordinates x, y, ~, 
[3, where x,y are the coordinates of the point A in the fixed system of coordinates XY, ~ is the "course" 
angle of the carriage (the angle between the X and xl axes), and 13 is the angle of rotation of the axis 
of the front wheeled pair with respect to the platform (the angle between the Xl and x2 axes). 

The rear and front wheels with centres of mass at the points EL, ER, and FL, FR respectively can rotate 
freely about their own axes without friction. The left and right wheels on the rear and front axes have 
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the same dimensions and mass-inertia characteristics. The platformAB has a centre of mass at the point 
C, A C  = a andAB = b. The axis of the front wheeled pair has a centre of mass at the point B. 

A moment M of a pair of forces between the platform of the carriage and the axis of the front wheeled 
pair is applied about the vertical axis, which is perpendicular to the plane of the figure and passes through 
the point B. 

When there is no slip of the wheels, the projections of the velocities of the point A and B onto the 
Yl andy2 axes respectively are equal to zero, and hence the generalized coordinates and velocities satisfy 
the equations of non-holonomic constraints 

-Asin~ + 3)cos~g = 0, -(~cos/g + )~sin~)sinl~ + qbcos[3 = 0 (1.1) 

Taking the velocity Vof  the pointA and the relative angular velocity ~ of the front wheeled pair with 
respect to the platform as the pseudo-velocities, we can express the generalized velocities in terms of 
the pseudo-velocities. 

= Vcos v,  y = Vsin~g, , = Vtg~, 1~ = 1] (1.2) 

Carrying out appropriate calculations to determines the accelerations of the centres of mass and 
angular.acceleration of the parts of the system, we obtain Appell's function - the "acceleration energy" 
S = S(V, ~, V, ~, x, y, ~, ~). Omitting the terms that do not depend on the accelerations, we finally 
obtain the following expression 

Here 

1 i)2 12 .-. 1, a2 m0tg[~ .-. Ie ..- S = ~(rn+motg2~) + ~tg[3V[~+- - -  + 
2t2p + cos2 ~VV[~ b~os2 V ~  

: 3t~) rn = 3rn e+3m F+m c + m  s, I z = I B+me(rF/2+ 

2 , ~  2 . 2  2 2 
m o = b-2(I2+I c+merEIz+mca +m~o +3mpb +3mElE) 

a = AC is the distance from the rear axis to the centre of mass of the platform, b = AB is the distance 
between the rear and front axes, le = AEL = AEn is the half-length of the rear axis, lF = AFL = AFR 
is the half-length of the front axis, re and rF are the radius of the rear and front wheels respectively, 
mc is the mass of the platform, Ic is the moment of inertia of the platform about the point C, me is 
the mass of the rear wheel, IE = mer2/2 is the moment of inertia of the rear wheel about its axis of 
rotation, mF is the mass of the front wheel, IF = mFr~/2 is the moment of inertia of the front wheel 
about its axis of rotation, m~ is the mass of the front axis (without the wheels), and IB is the moment 
of inertia of the front axis about the point B. 
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We will take Appell's equations in pseudo-velocities [5] 

bS bS 
Of; Qv, --v: = Qf~ 

as the initial equations of the carriage motion. 
Here Qv and Q~ are generalized forces, where, in the case considered here, Qv = O, Q~ = M and M 

is the moment of the pair of forces applied to the front wheeled pair (in this case a moment -M will 
be applied to the platform AB). 

After differentiating Appell's function we obtain a sixth-order system of non-linear differential 
equations. 

V 
~/ = Vcos% 3~ = Vsin~, ~ = ~tgl3 

go(J3) 9 + 12 tg [3 g = _m0tg ~ VI~ (1.3) 
b ~ cos2~ 

12tg~ . . a 12 V~ 
V + IZP = M - bcos2--'--- ~ 

where g0(13) = m + m0 tg213. 
The last two equations of system (1.3) are always solvable for the higher derivatives. Here, if we put 

ml = mo - I2/b z, we obtain a third-order system of two non-linear differential equations, which can be 
separated from the kinematic equations in the case when the moment M is independent of the 
generalized coordinates x, y, % 

1 2 =  tg~ mltg[~ V[~, ~ = g o ( ~ )  . m VII (1 .4)  
-bgl([J---~) M gl(~)cos213 I2~1(~) M bgl(~)cos2D 

where g1([3) = m + rn 1 tg213. 
Below we will investigate system (1.4) in the following cases: 
(1) M = 0 - free motion of the carriage, for which we can construct an exact solution of system (1.4); 
(2) M = -K~ - there is elastic constraint between the front and rear pairs of wheels and the platform; 
(3) M = M0cosvt there is an internal active periodic moment with amplitude M0 and frequency v. 

Remark 1. The problem of integrating Eqs (1.4) of the free motion of the carriage was formally reduced to 
quadratures in [6]. It was asserted [6, p. 117], that the solution obtained describes a system with self-orienting front 
wheels. However, the analysis of the exact solution of Eqs (1.4) carried out below shows that the carriage considered, 
unlike robots with front rollers [10], generally does not possess the property of self-orientation of the front wheels 
leading to rectilinear translational motion of the platform. 

2. THE I N E R T I A L  F R E E  M O T I O N  OF THE SYSTEM 

When there is no moment (M = 0) we obtain the following system of non-linear differential equations 
from system (1.4) 

= to, t b -  m Vto, I)" = mltg[~  Vco (2 .1)  
bgl(ff)cos213 gl(13)cos213 

System (2.1) has an entire plane of equilibrium states 

co = 0, V = const, 13 = const 

When M = 0, from the last equation of (1.3) we obtain the integral of the angular momentum of the 
front wheeled pair about the vertical axis 

I e 2 ( ~ - V  + m) = Kz : const (2.2) 
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The last equation of system (2.1) is an equation with separable variables, from which we obtain the 
first integral (the energy integral) 

(m + mltg2[~)V 2 = const = 2T 0 

Eliminating tg[~ from Eqs (2.2) and (2.3), we obtain 

mV 2 + mlb2(Kz/12- 03) 2 = 2T 0 

(2.3) 

(2.4) 

Hence, in the three-dimensional phase space [~, 03, V of system (1.3), the projection of the phase 
trajectory onto the 03, Vplane is the ellipse (2.4), the centre of which is at the point V = 0, co = KflI2. 

The semiaxes of this ellipse are respectively ~/2To~m, ~ 2To/(mlb2). 
If the condition 

= 2 2 2 I A - m c  b2 me(3b -31 e - r J 2 ) ,  IA = I c + m c  a2 (2.5) 

is satisfied, which can be achieved by an appropriate choice of the geometrical parameters and the 
distribution of the masses of the platform and of the front wheels of the carriage, and if the initial 
conditions satisfy the relation 

2To Kz 
lb 2 12 > 0 (2.6) 

the solution of Eqs (2.1) can be written in the form 

V(t) = + [2To. 
-q~h(t) 

K z [ 2T O 
= - -  C 2 = 

12 ' ~1m-'-~2 

1 (C2 + Cl)~(/) -- C2 + C l  

tg[3(t) = 2 {(t) 2 ~  ' 

~(t) = th ,~ - e l ( t +  uo) , c I 

Note that condition (2.5) is analogous to the limitation imposed on the mass distribution in an astatic 
gyroscope in gimbals, considered in [11], in which, when integrating the equations of motion, the 
hyperelliptic integrals are reduced to elliptic integrals. 

When condition (2.6) is satisfied, the ellipse (2.4) intersects the plane co = 0 of the equilibrium states 
of system (2.1). The corresponding phase trajectory asymptotically approaches the point 

/ +/ 
= - -  " 2 ~ 2  2 V* 4 ~ tg[~* = 42izTo_mob Kz 

(2.7) 

Stationary solution (2.7) represents the uniform rotation of the platform around a vertical axis. The 
pointA in this case moves with constant velocity V* along a circle of radius bctg~*. 

If the initial conditions for the differential equations are such that 

~ T0 < 

system (1.4) will not have stationary solutions. Possible types of trajectories of the point A, obtained 
by numerical integration of system (1.3), are shown in Fig. 2 in the case when inequality (2.8) is satisfied 
(a) and when the system reaches a steady state (2.7) (b). 

3. THE MOTION OF THE CARRIAGE WHEN THERE IS 
AN ELASTIC MOMENT 

We will consider the case when the moment of the pair of forces is proportional to the angle of rotation 
[3 of the front wheeled pair of wheels with respect to the platform 
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M = - K ~  (3A) 

Here K is the stiffness of the corresponding spring. Equations (1.4) can then be written in the form 

K~t0(13) m 2 V~, V -  Kl]tgl3 mltg[3 Vo~ (3.2) 
= co, 6J - 12~tl(~) b~l(~)cos [~ b~l(~) ~tl(~)cos2 ~ 

Remark 2. Chaplygin's reducing factor method was used in [6] to analyse this case, from which it was not possible 
"to extract any practical recommendations" or to understand the pattern of the motion, and hence a fairly lengthy 
qualitative analysis of the energy integral was carried out in [6]. The asymptotic method used below enables the 
motion of the carriage to be described almost immediately. 

Changing to dimensionless variables 

= EXI, O~ = E~'~X2, V = e~bx3, K = jmb2f~ z, 12 = jmb 2 

and introducing the dimensionless time x = f~t (f~ = ~/-K-~2), after expanding the right-hand sides of 
Eqs (3.2) in series in the small parameter e, we obtain 

Xtl ~ X 2 

+ C 4(2m - 3ml)(m I - t x 2  - - X l  E X 2 X 3 + E 2 m l - m O  3 E3ml - m  2 mo) 5 
: -- X 1 + X 1 X 2 X  3 X 1 -- 

m m 3m 2 

- ~ 5 ( 2 - 5 m t .  m~'] 4 
~3 3m + -~ )  x'x2x3 (3.3) 

. . 2 2 m l  . , ,  3 . 3 m l - m  4 4 m l ( 3 m l - 4 m )  3 
x 3 = Ejx l - e  ~-XlZ2~ 3 - e  j ~ x  1 + ~ 3m e x~x2x 3 + 

5 . (2  ml m ~ ) 6  

Equations (3.3) can be reduced to the standard form of the asymptotic method of averaging by chang- 
ing the variables 

x 1 = acos<p, x 2 = -Asin~p (3.4) 

where a is the amplitude and ~p is the phase. Averaging the right-hand sides of the equations for the 
slow variables a and x3 with respect to the fast variable % we obtain the following system of average 
equations 
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A ' =  e , E. 2 - ~ a x  3, x 3 = ~ ja  (3.5) 

The first integral of Eqs (3.5) has the form 

• 2 2 
JA + x 3 = const (3.6) 

If, at the initial instant, the system is in a state of rest (a(0) = a0, x3(0) = 0), it follows from (3.5) 
that its solution approaches the point a ( ~ )  = 0, x3(~) = a04-] ". Reverting to dimensional variables, we 
conclude that the centre of mass of the system will tend to rectilinear motion with constant velocity 
equal to 13oqK-~m. 

4. A S Y M P T O T I C  S O L U T I O N  OF T H E  E Q U A T I O N S  OF M O T I O N  
W H E N  T H E R E  IS A P E R I O D I C  M O M E N T .  V I B R A T I O N A L  

A C C E L E R A T I O N  OF T H E  C A R R I A G E  

When there is a periodic moment, we take the first integrals of the unperturbed problem, obtained in 
Section 2, as the new variables and, instead of the variables [3, [3, V, we introduce the variables z, To, Kz 
related to the old variables by the formulae 

z =  tg[3, To= ~(m+mltgZ~)V 2, K z =  I z tgl]+[~ (4.1) 

The inverse transformation from the new variables to the old ones has the form 

~ = arctgz' f~ = Kz b m + mlz2' V = ~m 2T°+ mlz2 (4.2) 

The new variables satisfy the equations 

(K~ z 2To dz = - ~ ~ ) ( l + z  2) 
dt 

(4.3) 

Mz l m  2 T O dK z dTo = --~ _ _ + m l z  
dt ~ = M, dt 2 

If the moment  applied to the front wheeled pair is small, to investigate system (4.3) we can use the 
asymptotic method because in system (4.3) the variables Kz and To are slow variables while z is a fast 
variable. 

To reduce the complexity of the formulae, we will confine ourselves to the special case when 

K z = Kosinvt, M = K0vcosvt, K 0 = const, v = const 

System (4.3) then takes the form 

dz (Kosinvt  z ~ ~  
- 

dT o Kozvcosvt [ 2T0 

dt - 3 : 4m + ml z2 

After making the replacement of variables 

x 
T O = T*y 2, K o = elzv, t = ~-~, 

2 E Z  1 

Z - 2 2 
1 - E  zl 

mb2v 2 mb 2 
T* = ~ 12 = ~¢---~-, m 1 = gm 

2 ' 

(4.4) 

(4.5) 
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Eqs (4.4), for small values of the parameter e, become a singularly perturbed system of non-linear 
differential equations 

2 2  
dzt zl( l +13 zl)Y ~ 2 2, . '~ dy 13~zl "t 

- - cos-  ( ),4.6. ed'c A(zl) + (1 +13 zl)sln~;, d'c A(zl) e 

J 2 2 .  2 2 2  
A(zl) = (1 -13 Zl) +4kt113 Z 1 

Here  zl is the "fast" variable, proportional to tg(~/2), y is the "slow" variable, and 13 and ~c are di- 
mensionless parameters 

K o 212 
13 = /--~, ~: = (4.7) 

mb 2 

In order to avoid singularities of "c/13 under the sign of the trigonometric function, we introduce the 
following notation 

• "C 17 
s i n -  ---- Z2, c o s -  ---- Z 3 (4.8) 

and supplement system (4.6) with two differential equations for z 2 and z3 with initial conditions 

z2(0 ) -- 0, z3(0 ) = 1 

We finally obtain a singularly perturbed system of fourth-order differential equations 

dy e~;z~z3 dzl 1 + 132 2 - Zl 2 2  dz2 dz  3 (4.9) 
dx A(z l ) '  e - ~ = - z l y ~ +  ( l + e z l ) z 2 ,  e~-~-=z  3, 13"~-~=--Z 2 

0 0 
YI~=0 = Y,  zl~:o : z 

Note that, apart from quantities of the order 136, the first two equation of the system can be written 
in the form 

_ 2 2  4 4  2 
dy elczlz3(1 +e z l (1 -2~h)  + e z l ( 1 - 6 ~  h + 6~1)+ ...) 
dz 

dZl 2 2  4 4  1.. 2 2 ,  
e--d- ~ = - z i y ( 1  +2e  z l (1 -~h)  +2e  zl(1-4p.~ + 3~t~)+ . . . )+~(1  + e  Zl)Z 2 

(4.10) 

The asymptotic solution of system (4.9) can be constructed using the "multiscale method", according 
to which the system is replaced by a system of partial differential equation [12, PI~- 43-52]. This solution, 
constructed for the "slow' variable y, apart from quantities of the order of e ~, contains a term that 
increases linearly with time 

0 EKT 
y(z)  = y + +.. .  (4.11) 

4(1 + y02) 

Correspondingly, we have the following estimates for the kinetic energy and velocity of the pointA 

4 2 
MA M A 

T O = 8mb21~v4t2, V= 2mb12v2 t (4.12) 

from which it follows that it is possible for the robot to accelerate when there is a periodic moment 
between the platform and the front wheeled pair. 

Here we point out a certain analogy between the effect represented by (4.11) and the Magnus effect 
[8] for a balanced gyroscope in gimbals, when, if the axis of symmetry of the rotor vibrates, a systematic 
rotation of the outer ring of the gimbals occurs. The direction of  this rotation is determined by the sign 
of the angle of rotation I] of the inner ring of the gimbals. According to formula (4.11) the direction 
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of motion of the carriage is determined by the sign of b, i.e. by the direction of the vector AB, drawn 
from the middle of the rear wheeled pair to the point of the hinged fastening of the front wheeled pair. 

5. AN ESTIMATE OF THE C O N D I T I O N S  OF R E A L I Z A B I L I T Y  OF 
N O N - H O L O N O M I C  C ONST R AINT S 

Appell's equations (1.3) were obtained when the conditions for non-holonomic constraints (1.1) were 
satisfied, i.e. when there was no slip of the wheels of the carriage on the horizontal surface. However, 
if the friction forces at the point where the wheels are in contact with the surface exceed the limit value 
of the Coulomb dry-friction forces, the wheels begin to slide and the motion of the system will not be 
described by Eqs (1.3). Hence, we will determine the friction forces at the points where the wheels are 
in contact with the surface, which enables us to estimate the characteristics of the construction and the 
parameters of the "accelerating" moment M (its amplitude and frequency), for which sliding begins. 

In deriving the required relations we will use the general theorems of dynamics, which are written 
for two subsystems (the platformAB and the front wheeled pair B), shown in Fig. 3. Here, for simplicity, 
we will confine ourselves to the case of weightless wheels. To estimate the realizability of non-holonomic 
constraints we will use Coulomb's axiom 

IRAI < f N  A, IgsI -< f N  B (5.1) 

wheref is  the coefficient of dry friction, and NA and NB are the reactions of the support to the surface. 
After appropriate calculations, we obtain the following system of inequalities 

I mVct   I < (mca + m s b ) ~  + mc (b - b2 

I(,,,ca I < f g ( m c a + m B b )  
+ mBb)b2cos~ s-~n~ - b " 

(5.2) 

which defines the domain of variation of the variables F, 12, I~, ~, in which the constraint equations 
(1.1) are satisfied. Outside this domain sliding begins. 
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